This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

# CALORIMETRIC STUDY OF THERMOCHROMIC COMPLEXES. 2. HEAT CAPACITY AND PHASE TRANSITION OF BIS(*N*,*N*-DIETHYLETHYLENEDIAMINE)COPPER(II) PERCHLORATE

Akihito Nishimori<sup>a</sup>; Michio Sorai<sup>a</sup>; Edward A. Schmitt<sup>b</sup>; David N. Hendrickson<sup>b</sup> <sup>a</sup> Microcalorimetry Research Center, Faculty of Science, Osaka University, Toyonaka, Osaka, Japan <sup>b</sup> Department of Chemistry, University of California at San Diego, La Jolla, California, USA

**To cite this Article** Nishimori, Akihito , Sorai, Michio , Schmitt, Edward A. and Hendrickson, David N.(1996) 'CALORIMETRIC STUDY OF THERMOCHROMIC COMPLEXES. 2. HEAT CAPACITY AND PHASE TRANSITION OF BIS(*N*,*N*-DIETHYLETHYLENEDIAMINE)COPPER(II) PERCHLORATE', Journal of Coordination Chemistry, 37: 1, 327 – 340

To link to this Article: DOI: 10.1080/00958979608023563 URL: http://dx.doi.org/10.1080/00958979608023563

# PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1996, Vol 37, pp. 327–340 Reprints available directly from the publisher Photocopying permitted by license only © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

# CALORIMETRIC STUDY OF THERMOCHROMIC COMPLEXES. 2. HEAT CAPACITY AND PHASE TRANSITION OF BIS(*N*,*N*-DIETHYLETHYLENEDIAMINE)COPPER(II) PERCHLORATE<sup>†</sup>

### AKIHITO NISHIMORI, MICHIO SORAI\*

Microcalorimetry Research Center, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

### EDWARD A. SCHMITT and DAVID N. HENDRICKSON

Department of Chemistry, University of California at San Diego, La Jolla, California 92093–0358, USA

(Received November 30, 1994; in final form December 30, 1994)

The thermochromic phase transition of bis(N,N-diethylethylenediamine) copper(II) perchlorate has been studied by adiabatic calorimetry in the 12–359 K temperature range. A large heat capacity anomaly was observed at 317.64 K with a long heat-capacity tail extending down to ~200 K. The enthalpy and entropy of the phase transition were found to be  $\Delta_{trs}H = 17.43$  kJ mol<sup>-1</sup> and  $\Delta_{trs}S = 55.21$  J K<sup>-1</sup> mol<sup>-1</sup>, respectively. Together with a calorimetric study of a homologous thermochromic complex, bis(N,N-diethylethylenediamine)copper(II) tetrafluoroborate (*J. Phys. Chem. Solids*, 55, 99 (1994)), the nature of the present thermochromic phase transition is well described by a puckering motion of the copper-ligand chelate rings and a change in the ligand-field strength estimated on the basis of the angular overlap model. The correlation between structures, electronic spectra and thermal properties is discussed.

KEYWORDS: thermochromism, copper(II) complex, phase transition, heat capacity, puckering motion, angular overlap model

#### INTRODUCTION

A number of substances are known to be thermochromic.<sup>1</sup> There are many types of thermochromism; it can be reversible or irreversible, continuous or discontinuous, and can occur either in the solid state or in solution. The series  $[M(dieten)_2]X_2$ , where M is Cu<sup>2+</sup> or Ni<sup>2+</sup>, dieten is *N*,*N*-diethylethylenediamine, and X is BF<sub>4</sub> or ClO<sub>4</sub>, has been particularly well-studied.<sup>2</sup> They show a remarkable color change

<sup>&</sup>lt;sup>†</sup>Contribution No. 98 from the Microcalorimetry Research Center. This paper is dedicated to Professor T. Iwamoto of the University of Tokyo. Part 1 of this series has been published in *J. Phys. Chem. Solids*, **55**, 99 (1994).

<sup>\*</sup> Author for correspondence.

when they undergo phase transitions in the solid state. Thermochromism in  $[Cu(dieten)_2](ClO_4)_2$  was first reported in 1938 by Pfeiffer et al.<sup>3</sup> The color of the copper complexes changes from red to blue-violet upon heating, while the color of the similar nickel complexes changes from orange to red. Both color changes are reversible. Infrared,<sup>4</sup> far-infrared,<sup>4</sup> electronic spectra,<sup>4,5</sup> magnetic measurement,<sup>5</sup> ESR,<sup>5</sup> differential scanning calorimetry (DSC),<sup>6</sup> X-ray diffraction<sup>7,8</sup> and NMR<sup>8,9</sup> have been reported. It was initially thought that the thermochromism was caused by axial approach of the anions to the copper or nickel ion.<sup>5,6</sup> However, when the crystal structures of both the low- and high-temperature phases were determined,<sup>7,8</sup> that idea turned out to be wrong. There exists no axial coordination of the counter anions in either of the phases because the bulky alkyl groups bonded to the nitrogen atoms prevent the counter anions from approaching the central metal atom. A new mechanism of thermochromism was proposed as follows: in the high-temperature phase the chelate rings pucker up and down while they remain static in the low-temperature phase. Such ring motion affects the ligand field strength, leading to the color change. This mechanism seems to be consistent with various experimental results so far available. However, the relationship between the microscopic aspects hitherto reported and the macroscopic energetic and entropic aspects is still unclear.

In a recent paper,<sup>10</sup> we reported the results of a calorimetric study of the phase transition of  $[Cu(dieten)_2](BF_4)_2$ . Precision heat capacity measurements were carried out with an adiabatic aclorimeter and a large heat-capacity anomaly associated with the color change was observed. The experimental results were interpreted on the basis of the Chesnut exciton model.<sup>11</sup> The thermodynamic quantities ( $\Delta C_p$ ,  $\Delta_{trs}H$  and  $\Delta_{trs}S$ ) were well reproduced by this model.

In order to gain more quantitative insight into the thermochromic mechanism of the series of complexes, in the present paper we estimate the difference of ligand-field energies between the low- and high-temperature phases on the basis of the angular overlap model and correlate it to the calorimetric results. In this paper we shall also discuss the thermal properties of  $[Cu(dieten)_2](ClO_4)_2$  and compare them with those of  $[Cu(dieten)_2](BF_4)_2$ .

# **EXPERIMENTAL**

# Preparation of the Complex

The complex  $[Cu(dieten)_2](ClO_4)_2$  was prepared according to the method described by Lever *et al.*<sup>5</sup> The elemental analysis for the complex gave a good agreement with the calculated values. *Anal.* Calcd. for  $C_{12}H_{32}N_4CuCl_2O_8(\%)$ : C, 29.13; H, 6.52; N, 11.32. Found: C, 28.95; H, 6.52; N, 11.24.

## Differential Thermal Analysis (DTA)

The qualitative nature of the thermal properties of  $[Cu(dieten)_2](ClO_4)_2$  was examined by use of a home-built DTA apparatus in the 100–380 K range.

### Heat Capacity Measurements

Heat capacity measurements were carried out with an adiabatic calorimeter<sup>12,13</sup> in the 12–359 K range. The mass of sample loaded in a calorimeter cell made of gold

and platinum was 10.0294 g (0.0202672 mol). The mass was corrected for the buoyancy by assuming a density of 1.511 g cm<sup>-3</sup> determined from the X-ray diffraction.<sup>7,8</sup> A small amount of helium gas was sealed in the calorimeter cell to aid heat transfer.

# Infrared Absorption Spectroscopy

Infrared spectra were recorded for Nujol mulls at 90, 200, 300 and 330 K in the 4000  $-400 \text{ cm}^{-1}$  range with an infrared spectrophotometer (Japan Spectroscopic Co., Ltd., Model DS-402G) and far-infrared spectra in the 400  $-30 \text{ cm}^{-1}$  range with a far-infrared spectrophotometer (Hitachi, Ltd., Model FIS-3). These spectra were used for estimation of the normal heat capacities by use of effective frequency distribution method.<sup>14</sup>

# RESULTS

Prior to heat capacity measurements, DTA data were measured for  $[Cu(dieten)_2](ClO_4)_2$ . The thermogram showed a single endothermic peak at 315 K on heating. A dramatic color change of the compound is easily seen when the sample in a DTA glass tube passes through this temperature on heating or on cooling. Adiabatic calorimetric measurements were made for 10.0294 g of  $[Cu(dieten)_2](ClO_4)_2$  in two series: series 1 (12-60 K) and series 2 (44-359 K). The results were evaluated in terms of  $C_p$ , the molar heat capacity at constant pressure. The temperature dependence of the observed heat capacities is listed in Table 1 and plotted in Figure 1. As expected from DTA, only a single peak due to the thermochromic phase transition was found at 317.64 K (=  $T_{trs}$ ). This phase transition is characterized by a long heat-capacity tail extending down to ~200 K, as in the case of  $[Cu(dieten)_2](BF_4)_2$ .<sup>10</sup> In the vicinity of the phase transition temperature (from 314.71 to 318.30 K), the thermal relaxation time required for the calorimeter cell to reach thermal equilibrium after an energy input was longer than two hours. This long endothermic temperature drift is characteristic of a first-order phase transition.

The observed heat capacity is composed of two parts: one is the normal heat capacity due to the lattice and molecular vibrations and the other is the excess heat capacity arising from the phase transition. In order to separate these two contributions, normal heat capacities were determined independently for the low- and high-temperature phases as follows. The normal heat capacities of the lowtemperature phase were estimated by using an effective frequency distribution method.<sup>14</sup> The intramolecular vibration frequencies necessary for this method were collected from the observed infrared spectra and data on related compounds available in the literature. On the other hand, those of the high-temperature phase were estimated by using a polynomial-function fitting. The normal heat capacities estimated by these methods are shown in Figure 1 by dotted curves. They exhibited a gap  $(= 46 \text{ J K}^{-1} \text{ mol}^{-1})$  at  $T_{\text{trs}}$ . Subtraction of the normal heat capacities from the observed values gave the excess heat capacities,  $\Delta C_p$ , associated with the phase transition. The temperature dependence of the excess heat capacities are shown in Figure 2, in which gradually increasing excess heat capacities with increasing temperature below  $T_{\rm trs}$  is clearly seen.

| T       | <i>C</i> <sub>p</sub>         | T       | <i>C</i> <sub>p</sub>         | T       |                                    |
|---------|-------------------------------|---------|-------------------------------|---------|------------------------------------|
| K       | $\overline{JK^{-1} mol^{-1}}$ | K       | $\overline{JK^{-1} mol^{-1}}$ | K       | JK <sup>-1</sup> mol <sup>-1</sup> |
| Series1 |                               |         |                               |         |                                    |
| 11 797  | 15.95                         | 25.644  | 67.31                         | 41.336  | 124.10                             |
| 12 568  | 17.82                         | 26.426  | 69.54                         | 42.932  | 129.23                             |
| 13 545  | 21.21                         | 27 545  | 73 72                         | 44.580  | 134.56                             |
| 14 510  | 21.21                         | 28 767  | 78 38                         | 46 275  | 139 72                             |
| 15 517  | 29.00                         | 30.034  | 83.12                         | 48 014  | 144 77                             |
| 16 611  | 20.12                         | 31 353  | 88 27                         | 40.014  | 150.00                             |
| 17,820  | 25.05                         | 27.669  | 03.41                         | 51 667  | 155.34                             |
| 17.629  | 33.93                         | 32.000  | 93.41                         | 52 550  | 150.54                             |
| 19.077  | 40.79                         | 25 262  | 102.44                        | 55 514  | 166.00                             |
| 20.240  | 40.43                         | 33.303  | 103.44                        | 57 522  | 171.54                             |
| 21.441  | 49.30                         | 20.809  | 100.04                        | 50.532  | 171.54                             |
| 22.721  | 54.49                         | 38.284  | 113.84                        | 39.323  | 170.84                             |
| 24.009  | 62.43                         | 39.788  | 118.97                        |         |                                    |
| Series2 |                               |         |                               |         |                                    |
| 44.382  | 133.82                        | 119.027 | 296.66                        | 203.135 | 433.91                             |
| 45.566  | 137.60                        | 121.126 | 300.11                        | 205.224 | 437.24                             |
| 46.812  | 141.26                        | 123.205 | 303.70                        | 207.306 | 441.28                             |
| 47.732  | 143.98                        | 125.277 | 307.22                        | 209.380 | 444.79                             |
| 48.969  | 147.55                        | 127.345 | 310.83                        | 211.446 | 448.19                             |
| 50.530  | 152.03                        | 129.396 | 314.17                        | 213.504 | 451.76                             |
| 52.132  | 156.61                        | 131.429 | 317.70                        | 215.555 | 455.21                             |
| 53.815  | 161.39                        | 133.447 | 320.67                        | 217.599 | 458.73                             |
| 55.574  | 166.29                        | 135.448 | 324.01                        | 219.637 | 462.62                             |
| 57.420  | 171.36                        | 137.436 | 327.20                        | 221.667 | 466.30                             |
| 59.343  | 176.50                        | 139.409 | 330.33                        | 223.690 | 470.04                             |
| 61.265  | 181.43                        | 141.404 | 333.76                        | 225.706 | 473.92                             |
| 63.188  | 186.37                        | 143.443 | 337.29                        | 227.715 | 477.49                             |
| 65.115  | 191.01                        | 145.492 | 340.62                        | 229.717 | 481.39                             |
| 67.021  | 195.53                        | 147.527 | 343.84                        | 231.712 | 485.11                             |
| 68.977  | 199.93                        | 149.549 | 347.00                        | 233.700 | 488.67                             |
| 70.943  | 204.31                        | 151.559 | 350.10                        | 235.682 | 492.30                             |
| 72.893  | 208.75                        | 153.557 | 353.39                        | 237.656 | 496.35                             |
| 74.886  | 213.05                        | 155.543 | 356.52                        | 239.624 | 500.33                             |
| 76.881  | 217.27                        | 157.552 | 359.80                        | 241.656 | 504.26                             |
| 78.827  | 221.48                        | 159.608 | 363.23                        | 243.750 | 508.09                             |
| 80.730  | 225.55                        | 161.675 | 366.42                        | 245.836 | 512.28                             |
| 82.593  | 229.52                        | 163.754 | 369.77                        | 247.914 | 516.90                             |
| 84.420  | 233.03                        | 165.852 | 373.09                        | 249.986 | 520.91                             |
| 86.213  | 236.56                        | 167.946 | 376.78                        | 252.049 | 525.38                             |
| 87.976  | 240.22                        | 170.029 | 380.18                        | 254.105 | 530.30                             |
| 89.754  | 243.50                        | 172.101 | 382.95                        | 256.154 | 534.88                             |
| 91.598  | 247.16                        | 174.163 | 386.78                        | 258.194 | 539.57                             |
| 93.535  | 250.96                        | 176.253 | 389.79                        | 260.227 | 544.62                             |
| 95.511  | 254.36                        | 178.315 | 393.34                        | 262.253 | 548.89                             |
| 97.458  | 257.91                        | 180.366 | 396.39                        | 264.271 | 554.23                             |
| 99.376  | 261.51                        | 182.408 | 399.52                        | 266.281 | 559.85                             |
| 101.335 | 265.38                        | 184.441 | 402.81                        | 268.283 | 564.99                             |
| 103.335 | 268.94                        | 186.465 | 406.15                        | 270.277 | 570.21                             |
| 105.309 | 272.34                        | 188.481 | 409.40                        | 272.296 | 576.88                             |
| 107.259 | 275.89                        | 190.488 | 412.85                        | 274.341 | 582.27                             |
| 109.186 | 279.25                        | 192.559 | 416.14                        | 276.377 | 588.95                             |
| 111.091 | 282.52                        | 194.692 | 419.56                        | 278.410 | 596.29                             |
| 113.000 | 285.98                        | 196 815 | 423.05                        | 280.438 | 603.03                             |
| 114.951 | 289.80                        | 198 930 | 426.99                        | 282.455 | 610.25                             |
| 116.956 | 293.40                        | 201.037 | 429.88                        | 284.461 | 617.68                             |

Table 1Molar heat capacity of  $[Cu(dieten)_2](ClO_4)_2$ 

| 286.457 | 625.45 | 315.635 | 1461.7 | 327.302 | 669.44 |
|---------|--------|---------|--------|---------|--------|
| 288.440 | 634.24 | 316.121 | 2288.8 | 328.705 | 671.07 |
| 290.410 | 643.07 | 316.496 | 3245.8 | 330.187 | 672.16 |
| 292.366 | 653.92 | 316.799 | 4123.0 | 331.755 | 673.73 |
| 294.311 | 662.32 | 317,056 | 4984.4 | 333.410 | 675.88 |
| 296.251 | 672.45 | 317.285 | 5468.6 | 335.155 | 677.05 |
| 298.180 | 685.85 | 317.487 | 6785.3 | 337.044 | 679.22 |
| 300.096 | 697.91 | 317.644 | 10108  | 339.025 | 681.89 |
| 301.996 | 711.70 | 317.779 | 9213.6 | 341.044 | 684.60 |
| 303.881 | 727.88 | 317.941 | 6805.2 | 343.058 | 687.25 |
| 305.750 | 745.92 | 318.168 | 4223.2 | 345.069 | 689.07 |
| 307.599 | 767.48 | 318.597 | 1294.9 | 347.078 | 691.69 |
| 308.975 | 784.49 | 319.264 | 759.56 | 349.082 | 694.71 |
| 309.883 | 800.03 | 320.027 | 678.34 | 351.083 | 696.29 |
| 310.784 | 816.12 | 320.902 | 673.61 | 353.081 | 699.62 |
| 311.677 | 833.35 | 321.898 | 669.50 | 355.075 | 701.76 |
| 321.561 | 856.23 | 322.920 | 667.08 | 357.082 | 703.84 |
| 313.435 | 884.40 | 323.942 | 666.57 | 359.104 | 707.00 |
| 314.290 | 935.98 | 324.963 | 667.74 |         |        |
| 315.037 | 1068.0 | 326.058 | 667.82 |         |        |

Table 1 Continued

The enthalpy,  $\Delta_{trs} H$  (= 17.43 kJ mol<sup>-1</sup>), and the entropy,  $\Delta_{trs} S$  (= 55.21 J K<sup>-1</sup> mol<sup>-1</sup>), of transition were determined by integration of  $\Delta C_p$  with respect to T and ln T, respectively. The temperature dependence of the entropy gain for the phase transition of [Cu(dieten)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub> is plotted in Figure 3. The entropy gain consists of two parts: one is the discontinuous part and the other is the gradual part. The discontinuous part occurs just in the temperature region, where the long thermal relaxation time was required for thermal equilibration after an energy input. The gradual part corresponds to the long tail of the excess heat capacity.

DSC measurements have already been carried out by Fabbrizzi *et al.*<sup>6</sup> and they obtained the transition enthalpies as 10.0 kJ mol<sup>-1</sup> for [Cu(dieten)<sub>2</sub>](BF<sub>4</sub>)<sub>2</sub> and 8.91 kJ mol<sup>-1</sup> for [Cu(dieten)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>. However, the transition enthalpy determined by the adiabatic calorimetry is 16.62<sup>10</sup> and 17.43 kJ mol<sup>-1</sup> for [Cu(dieten)<sub>2</sub>](BF<sub>4</sub>)<sub>2</sub> and [Cu(dieten)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>, respectively. The enthalpies detected by DSC are less than 60 percent of the transition enthalpies. In this type of phase transition, it is usually difficult to accurately obtain the excess enthalpy by DSC, because the transition has a long  $C_p$  tail extending below the transition temperature. DSC measurements can sense the discontinuous part but often fail to detect the gradual part.

The standard thermodynamic functions of  $[Cu(dieten)_2](ClO_4)$  are listed in Table 2. The effective frequency distribution method<sup>14</sup> was used for the extrapolation below 13 K.

#### DISCUSSION

# Onset of Puckering Motion of the Metal-Ligand Chelate Rings

The crystal structures of  $[Cu(dieten)_2](BF_4)_2$  have been determined in both the low- and high-temperature phases.<sup>7,8</sup> They provide a useful clue to the molecular freedom responsible for the entropy gain. The most remarkable change in the



Figure 1 Temperature dependence of the molar heat capacity of  $[Cu(dieten)_2](ClO_4)_2$ . The dotted curve shows the calculated normal heat capacities. The solid lines are only guides for the eye.

structure occurring through the phase transition is the motion of the chelate rings, which is easily seen from anisotropic thermal ellipsoids of the constituent atoms. The chelate rings are puckering up and down from the  $CuN_4$  plane in the high-temperature phase. Provided that this chelate ring puckering is responsible for an essential part of the transition mechanism, we can estimate the enthalpy gain at the phase transition as follows. Let us assume that the chelate rings are static in the low-temperature phase, whereas they pucker in the high-temperature phase. There are two chelate rings in a cation, consisting of a five-membered  $\text{CuN}_2\text{C}_2$  ring. When the plane formed by the CuN<sub>2</sub> is fixed, the five-membered ring has four different configurations: two configurations in which two carbon atoms are tipped off to the same side of the plane and two configurations in which two carbon atoms are tipped off to the opposite sides of the plane. It should be remarked that the number of degrees of freedom for the puckering motion of a five-membered ring is two. Moreover, since there exist two chelate rings in a cation, the total number of the puckering modes amounts to four. These four modes are roughly assumed to be degenerate and simply approximated by the Einstein harmonic oscillator. The changes of thermodynamic quantities contributed from one oscillator at the transition point,  $T_{\rm trs}$ , are evaluated by means of the following equations:

$$x \equiv \frac{hc\,\tilde{v}}{kT_{\rm trs}},\tag{1}$$

$$\Delta C(x) = R \frac{x^2 e^x}{(e^x - 1)^2},$$
(2)

$$\Delta H(x) = RT_{\rm trs} \frac{x}{e^x - 1},\tag{3}$$

$$\Delta S(x) = R \bigg\{ \frac{x}{e^x - 1} - \ln(1 - e^{-x}) \bigg\}, \tag{4}$$



Figure 2 Temperature dependence of the excess heat capacity of  $[Cu(dieten)_2](ClO_4)_2$ . The solid curves are only guides for the eye.



Figure 3 Temperature dependence of the entropy gain for the phase transition of  $[Cu (dieten)_2] (ClO_4)_2$ .

| T/K    | $C_p^{\circ}$ | S°.                 | $(H^\circ - H^\circ_0)/T$ | $-(G^\circ - H_0^\circ)/T$ |
|--------|---------------|---------------------|---------------------------|----------------------------|
| 5      | (1.46)        | (0.488)             | (0.366)                   | (0.122)                    |
| 10     | (10.48)       | (3.746)             | (2.787)                   | (0.959)                    |
| 15     | 26.21         | 10.832              | 7.860                     | 2.972                      |
| 20     | 45.28         | 20.809              | 14.689                    | 6.120                      |
| 30     | 82.99         | 46.343              | 31.226                    | 15.117                     |
| 40     | 119.68        | 75.390              | 48.888                    | 26.502                     |
| 50     | 150.52        | 105.507             | 66.228                    | 39.280                     |
| 60     | 178.09        | 135.436             | 82.609                    | 52.826                     |
| 70     | 202.21        | 164.765             | 98.024                    | 66.741                     |
| 80     | 223.98        | 193.203             | 112.427                   | 80.775                     |
| 90     | 243.99        | 220.761             | 125.960                   | 94.801                     |
| 100    | 262.74        | 247.448             | 138.707                   | 108.742                    |
| 110    | 280.65        | 273.345             | 150.808                   | 122.538                    |
| 120    | 298.26        | 298.538             | 162.378                   | 136.160                    |
| 130    | 315.22        | 323.081             | 173.487                   | 149.593                    |
| 140    | 331.34        | 347.031             | 184.186                   | 162.845                    |
| 150    | 347.70        | 370.462             | 194.556                   | 175.906                    |
| 160    | 363.83        | 393.412             | 204.627                   | 188.785                    |
| 170    | 380.13        | 415.951             | 214.465                   | 201.486                    |
| 180    | 395.85        | 438.119             | 224.100                   | 214.019                    |
| 190    | 412.01        | 459.946             | 233.556                   | 226.390                    |
| 200    | 428.46        | 481.498             | 242.886                   | 238.612                    |
| 210    | 445.81        | 502.817             | 252.134                   | 250.683                    |
| 220    | 463.27        | 523.950             | 261.326                   | 262.624                    |
| 230    | 481.92        | 544.951             | 270.509                   | 274.442                    |
| 240    | 501.06        | 565.856             | 279.706                   | 286.150                    |
| 250    | 520.94        | 586.707             | 288.953                   | 297,754                    |
| 260    | 544.06        | 607.581             | 298.311                   | 309.269                    |
| 270    | 569.48        | 628.576             | 307.869                   | 320.706                    |
| 280    | 601.57        | 649.848             | 317.768                   | 332.081                    |
| 290    | 641.23        | 671.613             | 328.201                   | 343.412                    |
| 300    | 697.31        | 694.238             | 339.513                   | 354.725                    |
| 310    | 802.12        | 718.547             | 352.482                   | 366.065                    |
|        |               | Phase transition at | 317.64 K                  |                            |
| 320    | 681.22        | 778.412             | 401.886                   | 376 526                    |
| 330    | 672.03        | 799.019             | 410.002                   | 389.017                    |
| 340    | 683.20        | 819.237             | 417.862                   | 401.375                    |
| 350    | 695.43        | 839.219             | 425.620                   | 413.600                    |
| 273 15 | 570 12        | 625 229             | 210.041                   | 224 207                    |
| 273.13 | 519.13        | 033.238             | 310.941                   | 324.297                    |
| 470.13 | 083.04        | 089.900             | 331.329                   | 332.632                    |

**Table 2** Standard thermodynamic functions for  $[Cu(dieten)_2](ClO_4)_2$  in the unit of J K<sup>-1</sup> mol<sup>-1</sup>; the values in the parentheses are extrapolated

where h, c, k and R are the Planck constant, the speed of light, the Boltzmann constant and the gas constant, respectively.  $\tilde{v}$  is a wave number of the puckering motion. If we assume that this puckering motion is responsible for the total entropy of transition, then  $\tilde{v}$  is calculated to be 115 cm<sup>-1</sup> for [Cu(dieten)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub> and 109 cm<sup>-1</sup> for [Cu(dieten)<sub>2</sub>](BF<sub>4</sub>)<sub>2</sub> from the relation,  $4\Delta S(x) = \Delta_{trs}S$ .  $\Delta_{trs}H$  and  $\Delta C_p$  are similarly obtained from  $4\Delta H(x)$  and  $4\Delta C(x)$ , respectively. The estimated values from the chelate ring puckering motion are listed in Table 3.  $4\Delta C(x)$  corresponds to a heat-capacity gap between two base lines at  $T_{trs}$ . The calculated gap, 33 J K<sup>-1</sup> mol<sup>-1</sup> is nearly equal to the average value of the experimental data for the two

**Table 3** Comparison of the theoretical and observed quantities.  $T_{trs}$ ,  $\Delta_{trs}H$  and  $\Delta_{trs}S$  are observed transition temperature, enthalpy and entropy of transition, respectively.  $\Delta H(x)$  and  $\Delta C(x)$  are calculated by equations (1) – (4), where  $x \equiv hc\tilde{v}/kT_{trs}$ .  $\Delta C_p$  indicates the gap of the normal heat capacities at  $T_{trs}$ .  $\Delta H(AOM)$  is the enthalpy gain due to the change in the *d*-electronic state.  $\Delta H(\text{total})$  is the sum of  $4\Delta H(x)$  and  $\Delta H(AOM)$ .

| Complex                   | T <sub>trs</sub> | $\Delta_{\rm trs} H$    | $\Delta_{\rm trs}S$         | $\Delta C_p$                             | $4\Delta C(x)$                         | $4\Delta H(x)$          | $\Delta H(AOM)$         | $\Delta H$ (total)      |
|---------------------------|------------------|-------------------------|-----------------------------|------------------------------------------|----------------------------------------|-------------------------|-------------------------|-------------------------|
|                           | К                | kJ<br>mol <sup>-1</sup> | $\frac{J K^{-1}}{mol^{-1}}$ | J K <sup>- 1</sup><br>mol <sup>- 1</sup> | $\frac{\overline{J K^{-1}}}{mol^{-1}}$ | kJ<br>mol <sup>-1</sup> | kJ<br>mol <sup>-1</sup> | kJ<br>mol <sup>-1</sup> |
| $[Cu(dieten)_2](BF_4)_2$  | 302.64           | 16.62                   | 55.3                        | 16                                       | 33                                     | 7.7                     | 9.1                     | 16.8                    |
| $[Cu(dieten)_2](ClO_4)_2$ | 317.64           | 17.43                   | 55.2                        | 46                                       | 33                                     | 8.0                     | 8.4                     | 16.4                    |

complexes, about 31 J K<sup>-1</sup> mol<sup>-1</sup>. The contribution of the chelate ring puckering to the observed  $\Delta_{trs}H$  is about 46% for each complex.

# Electronic Energy Derived from the Angular Overlap Model (AOM)

According to the X-ray structural analysis of  $[Cu(dieten)_2](CIO_4)_{2^3}^{7,8}$  there is no significant change in the Cu-N distances, whereas the trans bond angles of N-Cu-N change slightly through the phase transition. In the low-temperature phase the angles are 180.0°, while in the high-temperature phase they are 178.0° and 174.7°. The  $[Cu(dieten)_2]^{2+}$  cation is characterized by a square-planar coordination geometry in the low-temperature phase. This geometry is slightly distorted toward a tetrahedral coordination in the high-temperature phase. Despite such a small geometrical change, the color of complexes changes dramatically when the phase transition occurs. The color of the complexes depends obviously on the absorption of visible light by a molecule. The absorption spectra in the visible region depend on the energy-level splitting of the d-orbitals. Variable-temperature d-d transition of  $[M(dieten)_2]X_2$  has already been studied.<sup>4-6</sup> These complexes show a red shift in the *d-d* transition when they are heated. To investigate the relationship between the absorption spectra and the *d*-orbital energy levels, the angular overlap model  $(AOM)^{15-18}$  was adopted. In this model, the interactions between the *d*-orbitals of the central metal and the ligand orbitals are estimated on the basis of the coordination geometry. The relative energy levels of the *d*-orbitals are calculated by solving the secular determinant which consists of the following matrix elements,  $E_{ii}$  $(i, j = 1 \cdot \cdot \cdot 5).$ 

$$E_{ij} = e_{\sigma} \sum_{n=1}^{4} F(d_i, L_n) F(d_j, L_n), \qquad (5)$$

where  $e_{a}$  is an energy unit describing a  $\sigma$ -type interaction and F(d, L) indicates the angular overlap factors for the *d*-orbitals of the central metal atom and the ligand orbitals. Many ligands such as NH<sub>3</sub> are known to have very little  $\pi$ -bonding to metal ions. Then only the  $\sigma$ -type interactions are treated in this model. The angular dependences of these factors are given in Table 4. There are two types of N atoms in the present complexes: one is bonded to two ethyl-group while the other has no ethyl moieties. Consequently there exist small differences in the Cu-N bond lengths. If this fact is taken into account, the symmetry of the CuN<sub>4</sub> plane becomes  $D_{2h}$ . On the other hand, if this difference is negligibly small, the symmetry of the CuN<sub>4</sub> plane is approximated by  $D_{4h}$ . The primary effect of lowering the symmetry from  $D_{4h}$  to  $D_{2h}$  is to lift the degeneracy of the two levels,  $d_{xz}$  and  $d_{yz}$ . Since this splitting is

expected to be small,<sup>19</sup> four nitrogen atoms are treated to be equal for the sake of simplicity of the evolution of the matrix elements given by equation (5).

The structure of  $[Cu(dieten)_2]^{2+}$  changes from a square-planar configuration in the low-temperature phase to a slightly tetrahedrally-distorted coordination in the high-temperature phase. The relative energies of the five *d*-orbitals can be calculated as a function of the polar angles  $(\theta, \phi)$  of the ligand position vectors. The central metal atom and the ligand nitrogen atoms are arranged in the polar coordinate system. In the case of square-planar geometry  $(D_{4h})$ , four nitrogen atoms are put on the positions  $L_1(90^\circ, 0^\circ)$ ,  $L_2(90^\circ, 90^\circ)$ ,  $L_3(90^\circ, 180^\circ)$  and  $L_4(90^\circ, 270^\circ)$ , while in the case of tetrahedral geometry  $(T_d)$ , they are put on the positions  $L_1(54.74^\circ, 45^\circ)$ ,  $L_2(125.26^\circ, 135^\circ), L_3(54.74^\circ, 225^\circ)$  and  $L_4(125.26^\circ, 315^\circ)$ . In between these two coordination geometries, the positions of ligand nitrogens are given as follows:  $L_1(\theta, \phi), L_2(180^\circ - \theta, \phi + 90^\circ), L_3(\theta, \phi + 180^\circ) \text{ and } L_4(180^\circ - \theta, \phi + 270^\circ).$ where  $\theta$  is variable in the 90°-54.74° range and  $\varphi$  is in the 0°-45° range. The relative energies of the d-orbitals are calculated from these parameters  $(\theta, \phi)$  and the angular overlap factors (F) given in Table 4. The calculated energy levels are illustrated in Figure 4 as a function of  $\theta$ . The unit of the ordinate axis,  $e_{\alpha}$ , corresponds to  $\Delta E(90)/3$ . Temperature effects on the electronic spectrum of  $[M(dieten)_2]X_2$  have been reported.<sup>4,5</sup> The visible light absorption maximum is shifted from 20750 cm<sup>-1</sup> in the low-temperature phase to 19230 cm<sup>-1</sup> in the high-temperature phase for  $[Cu(dieten)_2](BF_4)_2$ , while from 20700 cm<sup>-1</sup> to 19305  $cm^{-1}$  for [Cu(dieten)<sub>2</sub>] (ClO<sub>4</sub>)<sub>2</sub>. The absorption maximum in the electronic spectrum corresponds to the  $d_{yz}$ ,  $d_{xz} \rightarrow d_{x^2-y^2}$  transition. Namely, the transition energy,  $hc \tilde{v}_{max}$ , is the energy difference between these two orbitals,  $\Delta E(\theta)$  in Figure 4. In the low-temperature phase, since the coordination geometry is  $D_{4h}$ ,  $\Delta E(90)$  is equal to  $hc \tilde{v}_{max}$  observed at lower temperature, while in the high-temperature phase  $\Delta E(\theta)$  is equal to  $hc \,\tilde{v}_{max}$  recorded at higher temperature. Therefore, the following relation is obtained,

$$\frac{\Delta E(90)}{\Delta E(\theta)} = \frac{hc \,\tilde{v}_{\text{max}} \text{ at lower temp.}}{hc \,\tilde{v}_{\text{max}} \text{ at higher temp.}} \tag{6}$$

The *trans* bond angle,  $\angle N$ -Cu-N =  $2\theta$ , is estimated from  $\Delta E(\theta)$  in this equation and the observed  $hc \tilde{v}_{max}$  values.

The enthalpy (actually the internal energy) or the d-orbitals is the sum of each electron's energy. The d-electrons are accommodated in the energy level diagram shown in Figure 4, one by one from bottom to top. There are nine d-electrons in

**Table 4** The angular overlap factors of the *d*-orbitals of a central atom as a function of the ligand position in polar coordinate,  $(\theta, \phi)$ , with a ligand  $\sigma$ -type orbital.

| d-orbital            | $F(d, L(\theta, \phi))$                      |
|----------------------|----------------------------------------------|
| $\overline{d_{z^2}}$ | $(1+3\cos 2\theta)/4$                        |
| $d_{\nu z}$          | $\sqrt{3}\sin \phi \sin 2\theta/2$           |
| $d_{xz}$             | $\sqrt{3} \cos \phi \sin 2\theta/2$          |
| $d_{xy}$             | $\sqrt{3} \sin 2\theta (1 - \cos 2\theta)/4$ |
| $d_{x^2 - y^2}$      | $\sqrt{3}\cos 2\theta (1 - \cos 2\theta)/4$  |



Figure 4 Energy level diagram calculated on the basis of the angular overlap model.

the copper complexes. The enthalpy of the *d*-orbitals in the low-temperature phase is calculated from the energy-scheme at  $\theta = 90^\circ$ , whereas that in the hightemperature phase is calculated from the scheme at the  $\theta$  estimated from equation (6). Consequently, the enthalpy change of the *d*-orbitals arising from the change in the coordination geometry is straightforwardly determined as the difference between the electron energies of the low- and high-temperature phases. The *trans* bond angle,  $\angle N$ -Cu-N, of [Cu(dieten)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub> in the high-temperature phase estimated from AOM is 164.4°, while the X-ray structural analyses<sup>7,8</sup> have indicated 178.0° and 174.7°. A small disagreement of the bond angle between experiment and theory likely reflects the approximate nature of the AOM. In the case of [Cu(dieten)<sub>2</sub>](BF<sub>4</sub>)<sub>2</sub>, the calculated bond angle is 165.0°, however an X-ray structural analysis has not been carried out.

The contribution of the *d*-orbital energy of the transition enthalpy is 9.1 and 8.4 kJ mol<sup>-1</sup> for  $[Cu(dieten)_2](BF_4)_2$  and  $[Cu(dieten)_2](ClO_{4_2})$ , respectively. These contributions amount to 54 and 48% of the respective observed enthalpy gain at the phase transition.

### Enthalpy Gain at the Phase Transition

Thermodynamic investigations of phase transition phenomena are often described in terms of an "entropy" gain at a given phase transition. This physical quantity surely plays a diagnostic role for inspection of the nature of phase transitions, because the entropy, though a macroscopic quantity, is correlated with the randomness or disorder occurring on microscopic levels by means of the Boltzmann principle. However, if we take into account the fact that thermodynamic stability between two phases is determined by the free energy difference,  $\Delta G = \Delta H - T\Delta S$ , it is clear that an "enthalpy" gain at the phase transition also plays an important role. The transition enthalpy provides us with information concerning the interaction energy involved in the phase transition. For example, even if the transition entropy is identical between two substances, the transition temperature may primarily be varied according to the enthalpy gain: the stronger the interaction energy, the higher the transition temperature.

We have so far regarded the observed transition enthalpy,  $\Delta_{trs}H$ , as consisting of two contributions: one is the enthalpy gain due to the onset of the puckering motion of the metal-ligand chelate rings and the other is the electronic energy gained by a change in the coordination geometry across the phase transition. These two contributions were analyzed in terms of the harmonic oscillator model and the angular overlap model, respectively. As summarized in Table 3, the former is  $4\Delta H(x) = 8.0$ kJ mol<sup>-1</sup> for [Cu(dieten)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>, where  $x = hc \tilde{\nu}/kT_{trs}$ , and the latter amounts to  $\Delta H(AOM) = 8.4$  kJ mol<sup>-1</sup>. The sum of these contributions corresponds to the theoretical enthalpy gain,  $\Delta H(\text{total}) = 16.4$  kJ mol<sup>-1</sup>. Surprisingly this theoretical value well accounts for the observed value,  $\Delta_{trs}H = 17.43$  kJ mol<sup>-1</sup>. Finally, an even better agreement has been attained for [Cu(dieten)<sub>2</sub>](BF<sub>4</sub>)<sub>2</sub>, in which  $\Delta_{trs}H$  and  $\Delta H(\text{total})$  are 16.62 and 16.8 kJ mol<sup>-1</sup>, respectively.

# Entropy Gain at the Phase Transition

Although the themochromic phase transition of  $[Cu(dieten)_2](ClO_4)_2$  occurs at 317.64 K, which is 15 K higher than that of  $[Cu(dieten)_2](BF_4)_2$ , their transition entropies are essentially equal: 55.2 and 55.3 J K<sup>-1</sup> mol<sup>-1</sup> for the ClO<sub>4</sub><sup>-</sup> and BF<sub>4</sub><sup>-</sup> salts, respectively. This indicates that the degrees of molecular freedom that are excited when the thermochromic phase transition takes place are identical for both complexes. In other words, the mechanism responsible for the thermochromism of one complex is similar to that of the other complex.

In the case of the enthalpy gain, both contributions from the puckering motion and the electronic energy due to the geometrical change were taken into account. However, we regarded the transition entropy as arising only from the onset of puckering motion of the metal-ligand chelate rings at the phase transition temperature. By equating the observed entropy gain,  $\Delta_{trs}S$ , to the puckering entropy,  $4\Delta S(x)$ , we estimated the characteristic frequency of the puckering motion in terms of the wave number,  $\tilde{v}$ . On the basis of this characteristic frequency, we determined a heatcapacity gap at the transition temperature between the low- and high-temperature phases, as well as the enthalpy gain due to the puckering motion. The estimated heat-capacity gap at  $T_{trs}$  accounts fairly well for the experimental value and, moreover, the observed transition enthalpy agrees well with the sum of the enthalpy gains arising from the puckering motion and the electronic energy. Based on this fact, we can expect that the entropy gain due to the change in the electronic state might be very small for the present series of complexes.

### Mechanisms of Thermochromic Phase Transitions

Various mechanisms have been reported to be responsible for thermochromic phenomena occurring in the solid state.<sup>1,2</sup> In the case of spin-crossover complexes, a dramatic change in their color occurs by virtue of a discontinuous change in the metal-ligand distances while maintaining the coordination geometry around a central metal atom. The large entropy difference between the high- and low-spin states, necessary for the Gibbs free-energy crossing, mainly originates in phonon entropy gained by softening of the metal-ligand skeletal vibrational modes on going from the low- to high-spin state.<sup>20-22</sup>

Another typical example of thermochromic compounds is tetra-coordinated Ni(II) complexes: isomerism between the square-planar diamagnetic green form and the tetrahedral paramagnetic brown form.<sup>23,24</sup> In this case a drastic configurational change is responsible for the thermochromism and the entropy difference is based on a different distribution of normal mode and lattice vibrations.

In the case of  $(IPA)CuCl_3^{25}$  and  $(IPA)_2CuCl_4^{25}$  where IPA is isopropylammonium ion, the color changes are caused by a change in the coordination number. Since such a change is very drastic, the potential barrier hindering interconversion between the conformation characteristic of the low-temperature phase and that of the high-temperature phase would be extremely high. This seems to be the reason for the remarkable super-heating effect of the low-temperature phase and undercooling effect of the high-temperature phase.

In the present  $[Cu(dieten)_2]X_2$  (X =  $ClO_4^-$  or  $BF_4^-$ ) complexes dynamic interconversion between ligand conformations plays a fundamental role in the mechanism of thermochromic phase transitions and configurational entropy mainly contributes to the entropy gain. A very similar situation has been encountered in the thermochromic complex  $[Cu(daco)_2](NO_3)_2$ , where daco = 1,5-diazacylooctane.<sup>26</sup> Each eight-membered daco ring statically coordinates to the central copper ion with a fixed chair-boat conformation in the low-temperature phase, whereas dynamic interconversion between the chair and the boat from takes place in the hightemperature phase. The entropy gain is well accounted for in terms of conformational disordering of the daco ligand.

Therefore, the present complexes  $[(Cu(dieten)_2]X_2, together with [Cu(daco)_2](NO_3)_2$ , form a new class of thermochromic family, in which dynamic motion of the ligands is responsible for the mechanism of thermochromism. Calorimetric studies on the homologous complexes  $[Ni(dieten)_2]X_2$  (X =  $ClO_4^-$  or  $BF_4^-$ ) are presently being undertaken.

#### Acknowledgement

This study was partially supported by the NSF grant CHE-9115286 (D.N.H).

#### References

- 1. K. Sone and Y. Fukuda, *Inorganic Thermochromism* (Inorganic Chemistry Concepts, Vol. 10, Springer-Verlag, Berlin, 1987).
- 2. D.B. Bloomquist and R.D. Willett, Coord. Chem. Rev. 47, 125 (1982).
- 3. P. Pfeiffer and H. Glaser, J. Prakt. Chem. 151, 134 (1938).
- 4. J.R. Ferraro, L.J. Basile, L.R. Gracia-Ineguez, P. Paoletti and L. Fabbrizzi, *Inorg. Chem.* 15, 2342 (1976).
- 5. A.B.P. Lever, E. Mantovani and J.C. Donini, Inorg. Chem. 10. 2424 (1971).
- 6. L. Fabbrizzi, M. Micheloni and P. Paoletti, Inorg. Chem. 13, 3019 (1974).
- 7. M.M. Andino, J.D. Curet and M. M. Muir, Acta Crystallogr. B32, 3185 (1976).

A. NISHIMORI et al.

- 8. I. Grenthe, P. Paoletti, M. Sandström and S. Glikberg, Inorg. Chem. 18, 2687 (1979).
- 9. R.J. Pylkki, R.D. Willett and H.W. Dodgen, Inorg. Chem. 23, 594 (1984).
- 10. A. Nishimori, E.A. Schmitt, D.N. Hendrickson and M. Sorai, J. Phys. Chem. Solids 55, 99 (1984).
- 11. D.B. Chesnut, J. Chem. Phys. 40, 405 (1964).
- 12. M. Yoshikawa, M Sorai, H. Suga and S. Seki, J. Phys. Chem. Solids 44, 311 (1983).
- 13. A. Nishimori, Y. Nagano and M. Sorai, unpublished result.
- 14. M. Sorai and S. Seki, J. Phys. Soc. Jpn 32, 382 (1972).
- 15. J.K. Burdett, Adv. Inorg. Chem. Radiochem. 21, 113 (1978).
- 16. E. Larsen and G.N. La Mar, J. Chem. Educ. 51, 633 (1974).
- 17. W. Smith and D.W. Clark, Rev. Roum. Chim. 20, 1243 (1975).
- A.B.P. Lever, *Inorganic Electronic Spectroscopy* (second edition) (Studies in Physical and Theoretical Chemsitry, Vol. 33, Elsevier, Amsterdam, 1984).
- 19. K.L. Bray, H.G. Drickamer, E.A. Schmitt and D.N. Hendrickson, J. Am. Chem. Soc. 111, 2849 (1989).
- 20. M. Sorai and S. Seki, J. Phys. Soc. Jpn 33, 575 (1972); J. Phys. Chem. Solids 35, 555 (1974).
- 21. K. Kaji and M. Sorai, Thermochim. Acta 88, 185 (1985).
- 22. M. Sorai, Y. Yumoto, D.M. Halepoto and L.F. Larkworthy, J. Phys. Chem. Solids 54, 421 (1993).
- 23. A. Takeuchi and S. Yamada, Bull. Chem. Soc. Jpn 42, 3046 (1969).
- 24. N. Arai, M. Sorai and S. Seki, Bull. Chem. Soc. Jpn 45, 2398 (1972).
- 25. A. Nishimori and M. Sorai, unpublished result.
- 26. H. Hara and M. Sorai, J. Phys. Chem. Solids 56, 223 (1995).